The decomposability of additive hereditary properties of graphs
نویسندگان
چکیده
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. If P1, . . . ,Pn are properties of graphs, then a (P1, . . . ,Pn)-decomposition of a graph G is a partition E1, . . . , En of E(G) such that G[Ei], the subgraph of G induced by Ei, is in Pi, for i = 1, . . . , n. We define P1⊕· · ·⊕ Pn as the property {G ∈ I : G has a (P1, . . . ,Pn)-decomposition}. A property P is said to be decomposable if there exist non-trivial hereditary properties P1 and P2 such that P = P1 ⊕ P2. We study the decomposability of the well-known properties of graphs Ik, Ok, Wk, Tk, Sk, Dk and Op.
منابع مشابه
Prime ideals in the lattice of additive induced-hereditary graph properties
An additive induced-hereditary property of graphs is any class of finite simple graphs which is closed under isomorphisms, disjoint unions and induced subgraphs. The set of all additive induced-hereditary properties of graphs, partially ordered by set inclusion, forms a completely distributive lattice. We introduce the notion of the join-decomposability number of a property and then we prove th...
متن کاملComplement of Special Chordal Graphs and Vertex Decomposability
In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملGeneralized chromatic numbers and additive hereditary properties of graphs
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let P and Q be additive hereditary properties of graphs. The generalized chromatic number χQ(P) is defined as follows: χQ(P) = n iff P ⊆ Qn but P 6⊆ Qn−1. We investigate the generalized chromatic numbers of the well-known properties of graphs Ik, Ok, Wk, Sk and Dk.
متن کاملGeneralized edge-chromatic numbers and additive hereditary properties of graphs
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let P and Q be hereditary properties of graphs. The generalized edge-chromatic number ρQ(P) is defined as the least integer n such that P ⊆ nQ. We investigate the generalized edge-chromatic numbers of the properties → H, Ik, Ok, W∗ k , Sk and Dk.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 20 شماره
صفحات -
تاریخ انتشار 2000